Studi Kelayakan Aspek Finansial Pembangunan Pembangkit Listrik Tenaga Piko-hidro untuk Listrik Desa dengan Penggerak Mula Pompa Sentrifugal Sebagai Turbin

Authors

  • Asep Neris Bachtiar Sekolah Tinggi Teknologi Industri Padang Author
  • Boby Rachman Sekolah Tinggi Teknologi Industri Padang Author
  • Riko Ervil Sekolah Tinggi Teknologi Industri Padang Author

DOI:

https://doi.org/10.36275/7wxgfk23

Keywords:

turbin, Piko-hidro, pompa sentrifugal, pompa sebagai turbin, PST, Studi Kelayakan

Abstract

Pompa sebagai turbin (PST) merupakan salah satu solusi yang ditawarkan oleh para peneliti agar masyarakat lebih mudah mendapatkan turbin air untuk pembangkit listrik tenaga piko-hidro. Penerapan PST pada sistem pembangkit listrik piko-hidro di masyarakat masih terbatas, hal ini antara lain karena belum adanya studi kelayakan PST pada sistem pembangkit listrik piko-hidro terutama dari aspek finansial. Penelitian ini bertujuan untuk menganalisis kelayakan pembangunan pembangkit listrik tenaga piko-hidro di desa terpencil yang belum memiliki jaringan listrik dengan menggunakan pompa sentrifugal sebagai turbin. Hasil analisis aspek finansial diketahui nilai BCR = 1,06 lebih besar dari 1,00, artinya pendapatan  dari pengoperasian pembangkit listrik tenaga piko-hidro melebihi biaya yang dikeluarkan. PBP = 7,34 tahun, artinya investasi pembangkit listrik tenaga piko-hidro dapat dikembalikan sebelum mencapai umur ekonomis 10 tahun. NPV = Rp. 6.130.000;, artinya keuntungan dari pembangkit listrik tenaga piko-hidro selama 10 tahun beroperasi adalah Rp. 6.130.000;. IRR = 18,12% lebih tinggi dari suku bunga bank 12%. Hasil analisis di atas menunjukkan bahwa pembangunan pembangkit listrik tenaga piko-hidro dianggap layak untuk dilaksanakan. Studi kelayakan ini  dapat dilanjutkan dengan menganalisis dari aspek lain seperti aspek ekonomi, aspek teknis, dan aspek lingkungan.

Downloads

Download data is not yet available.

References

Achebe, C. H., Okafor, O. C., & Obika, E. N. (2020). Design and implementation of a crossflow turbine for Pico hydropower electricity generation. Heliyon, 6(7), e04523. https://doi.org/10.1016/j.heliyon.2020.e04523

Ali, A., Yuan, J., Javed, H., Si, Q., Fall, I., Ohiemi, I. E., Islam, R. ul. (2023). Small hydropower generation using pump as turbine; a smart solution for the development of Pakistan’s energy. Heliyon, 9(4), e14993. https://doi.org/10.1016/j.heliyon.2023.e14993

Alshami, A. H., & Hussein, H. A. (2021). Feasibility analysis of mini hydropower and thermal power plants at Hindiya barrage in Iraq. Ain Shams Engineering Journal, 12(2), 1513–1521. https://doi.org/10.1016/j.asej.2020.08.034

Bachtiar, A. N., Pohan, A. F., Ervil, R., & Nofriadiman. (2023). Feasibility Study on the Development of a Pico-hydro Power Plant for Village Electricity Using a Centrifugal Pump as Turbine (PAT) Prime Mover. International Journal on Advanced Science, Engineering and Information Technology, 13(5), 1871–1879. https://doi.org/10.18517/ijaseit.13.5.18221

Bachtiar, A. N., Pohan, A. F., Ervil, R., Nofriadiman, Santosa, Berd, I., & Dinata, U. G. S. (2021). Effect Of Geometric Differences Impeller Blades On Performance Blower-As-Turbine (Bat) On Pico-Hydro Scale. International Journal of Renewable Energy Research, 11(3), 1124–1135. https://doi.org/10.20508/ijrer.v11i3.11943.g8243

Bachtiar, A. N., Pohan, A. F., Yusti, I., Ervil, R., Santosa, Berd, I., & Dinata, U. G. S. (2020). Effect of head variations on performance four sizes of blowers as turbines (BAT). International Journal of Renewable Energy Research, 10(1), 343–353. https://doi.org/10.20508/ijrer.v10i1.10482.g7879

Bachtiar, N., Pohan, A. F., Ervil, R., & Nofriadiman. (2023). Effect of Rotation and Constant Head Variation on Performance of Three Sizes of Pump-as-Turbine (PAT). International Journal of Renewable Energy Research, 13(1). https://doi.org/10.20508/ijrer.v13i1.13537.g8673

Carravetta, A., Fecarotta, O., & Ramos, H. M. (2021). Corrigendum to “A new low-cost installation scheme of PATs for pico-hydropower to recover energy in residential areas” [Renewable Energy, 125, 2018, 1003–1014] (Renewable Energy (2018) 125 (1003–1014), (S0960148118302842), (10.1016/j.renene.2018.02.132)). Renewable Energy, 167, 966. https://doi.org/10.1016/j.renene.2020.12.017

Chaulagain, R. K., Poudel, L., & Maharjan, S. (2023). A review on non-conventional hydropower turbines and their selection for ultra-low-head applications. Heliyon, 9(7), e17753. https://doi.org/10.1016/j.heliyon.2023.e17753

Chichkhede, S., Verma, V., Gaba, V. K., & Bhowmick, S. (2016). A Simulation Based Study of Flow Velocities across Cross Flow Turbine at Different Nozzle Openings. Procedia Technology, 25(Raerest), 974–981. https://doi.org/10.1016/j.protcy.2016.08.190

Dhaubanjar, S., Lutz, A. F., Gernaat, D. E. H. J., Nepal, S., Smolenaars, W., Pradhananga, S., … Immerzeel, W. W. (2021). A systematic framework for the assessment of sustainable hydropower potential in a river basin – The case of the upper Indus. Science of the Total Environment, 786, 147142. https://doi.org/10.1016/j.scitotenv.2021.147142

Guiamel, I. A., & Lee, H. S. (2020). Potential hydropower estimation for the Mindanao River Basin in the Philippines based on watershed modelling using the soil and water assessment tool. Energy Reports, 6, 1010–1028. https://doi.org/10.1016/j.egyr.2020.04.025

Manufacturing, 35, 1172–1177. https://doi.org/10.1016/j.promfg.2019.06.073

Kamal, M. M., Abbas, A., Alam, T., Gupta, N. K., Khargotra, R., & singh, T. (2023). Hybrid cross-flow hydrokinetic turbine: Computational analysis for performance characteristics with helical Savonius blade angle of 135°. Results in Engineering, 20(August), 101610. https://doi.org/10.1016/j.rineng.2023.101610

Satou, E., Uchiyama, T., Takamure, K., Ikeda, T., Okayama, T., Miyazawa, T., & Tsunashima, D. (2023). Changes in power generation performance of an undershot cross-flow-type hydraulic turbine in an irrigation channel due to snow masses passing through the rotor. Heliyon, 9(10), e20833. https://doi.org/10.1016/j.heliyon.2023.e20833

Thyer, S., & White, T. (2023). Energy recovery in a commercial building using pico-hydropower turbines: An Australian case study. Heliyon, 9(6), e16709. https://doi.org/10.1016/j.heliyon.2023.e16709

Uchiyama, T., Honda, S., Okayama, T., & Degawa, T. (2016). A Feasibility Study of Power Generation from Sewage Using a Hollowed Pico-Hydraulic Turbine. Engineering, 2(4), 510–517. https://doi.org/10.1016/J.ENG.2016.04.007

Verma, V., Gaba, V. K., & Bhowmick, S. (2017). An Experimental Investigation of the Performance of Cross-flow Hydro Turbines. Energy Procedia, 141, 630–634. https://doi.org/10.1016/j.egypro.2017.11.084

Wu, X., Wu, H. N., Zuo, L., & Chen, B. F. (2022). The effect of the blade number on a cross-flow hydrokinetic turbine. IFAC-PapersOnLine, 55(27), 62–67. https://doi.org/10.1016/j.ifacol.2022.10.489

Published

2025-06-30

How to Cite

Studi Kelayakan Aspek Finansial Pembangunan Pembangkit Listrik Tenaga Piko-hidro untuk Listrik Desa dengan Penggerak Mula Pompa Sentrifugal Sebagai Turbin. (2025). Jurnal Sains Dan Teknologi: Jurnal Keilmuan Dan Aplikasi Teknologi Industri, 25(1), 51-62. https://doi.org/10.36275/7wxgfk23