Rancang Bangun Turbin Cross-flow sebagai Penggerak Mula Sistem Pembangkit Listrik Tenaga Piko-hidro Model Drum

Authors

  • Asep Neris Bachtiar Sekolah Tinggi Teknologi Industri Padang Author
  • Ahmad Fauzi Pohan Universitas Andalas Author
  • Riko Ervil Sekolah Tinggi Teknologi Industri Padang Author
  • Irwan Yusti Sekolah Tinggi Teknologi Industri Padang Author

DOI:

https://doi.org/10.36275/whm2q157

Keywords:

Turbin air, Cross-flow, Penggerak mula, Piko-hidro

Abstract

Sistem pembangkit listrik tenaga piko-hidro model drum menjadi solusi dalam mempercepat pengembangan dan penyebaran pembangkit listrik skala kecil di masyarakat. Penelitian ini berhasil merancang dan membangun turbin Cross-flow sebagai penggerak mula untuk sistem pembangkit listrik model drum dengan memanfaatkan potensi head 2,5 m dan debit air 20 L/s yang diproyeksikan mampu membangkitkan energi listrik 400 Watt. Hasil analisis diperoleh spesifikasi komponen turbin Cross-flow yaitu, elbow dengan penampang masuk sama dengan penampang keluar yaitu le × be  = 120 mm × 80 mm. Nozel dengan penampang masuk ln × bn  = 120 mm × 70 mm. Katup, panjang (lk) = 119 mm, diameter poros katup (dpk) = 10 mmm, dan panjang poros katup (lpk) = 210 mm. Runner, diameter luar (Do) = 80 mm, diameter dalam (Di) = 54 mm.

Downloads

Download data is not yet available.

References

Achebe, C. H., Okafor, O. C., & Obika, E. N. (2020). Design and implementation of a crossflow turbine for Pico hydropower electricity generation. Heliyon, 6(7), e04523. https://doi.org/10.1016/j.heliyon.2020.e04523

Ali, A., Yuan, J., Javed, H., Si, Q., Fall, I., Ohiemi, I. E., … Islam, R. ul. (2023). Small hydropower generation using pump as turbine; a smart solution for the development of Pakistan’s energy. Heliyon, 9(4), e14993. https://doi.org/10.1016/j.heliyon.2023.e14993

Alshami, A. H., & Hussein, H. A. (2021). Feasibility analysis of mini hydropower and thermal power plants at Hindiya barrage in Iraq. Ain Shams Engineering Journal, 12(2), 1513–1521. https://doi.org/10.1016/j.asej.2020.08.034

Bachtiar, A. N., Pohan, A. F., Ervil, R., & Nofriadiman. (2023). Feasibility Study on the Development of a Pico-hydro Power Plant for Village Electricity Using a Centrifugal Pump as Turbine (PAT) Prime Mover. International Journal on Advanced Science, Engineering and Information Technology, 13(5), 1871–1879. https://doi.org/10.18517/ijaseit.13.5.18221

Bachtiar, A. N., Pohan, A. F., Ervil, R., Nofriadiman, Santosa, Berd, I., & Dinata, U. G. S. (2021). Effect Of Geometric Differences Impeller Blades On Performance Blower-As-Turbine (Bat) On Pico-Hydro Scale. International Journal of Renewable Energy Research, 11(3), 1124–1135. https://doi.org/10.20508/ijrer.v11i3.11943.g8243

Bachtiar, A. N., Pohan, A. F., Yusti, I., Ervil, R., Santosa, Berd, I., & Dinata, U. G. S. (2020). Effect of head variations on performance four sizes of blowers as turbines (BAT). International Journal of Renewable Energy Research, 10(1), 343–353. https://doi.org/10.20508/ijrer.v10i1.10482.g7879

Bachtiar, N., Pohan, A. F., Ervil, R., & Nofriadiman. (2023). Effect of Rotation and Constant Head Variation on Performance of Three Sizes of Pump-as-Turbine (PAT). International Journal of Renewable Energy Research, 13(1). https://doi.org/10.20508/ijrer.v13i1.13537.g8673

Carravetta, A., Fecarotta, O., & Ramos, H. M. (2021). Corrigendum to “A new low-cost installation scheme of PATs for pico-hydropower to recover energy in residential areas” [Renewable Energy, 125, 2018, 1003–1014] (Renewable Energy (2018) 125 (1003–1014), (S0960148118302842), (10.1016/j.renene.2018.02.132)). Renewable Energy, 167, 966. https://doi.org/10.1016/j.renene.2020.12.017

Chaulagain, R. K., Poudel, L., & Maharjan, S. (2023). A review on non-conventional hydropower turbines and their selection for ultra-low-head applications. Heliyon, 9(7), e17753. https://doi.org/10.1016/j.heliyon.2023.e17753

Chichkhede, S., Verma, V., Gaba, V. K., & Bhowmick, S. (2016). A Simulation Based Study of Flow Velocities across Cross Flow Turbine at Different Nozzle Openings. Procedia Technology, 25(Raerest), 974–981. https://doi.org/10.1016/j.protcy.2016.08.190

Dhaubanjar, S., Lutz, A. F., Gernaat, D. E. H. J., Nepal, S., Smolenaars, W., Pradhananga, S., … Immerzeel, W. W. (2021). A systematic framework for the assessment of sustainable hydropower potential in a river basin – The case of the upper Indus. Science of the Total Environment, 786, 147142. https://doi.org/10.1016/j.scitotenv.2021.147142

Guiamel, I. A., & Lee, H. S. (2020). Potential hydropower estimation for the Mindanao River Basin in the Philippines based on watershed modelling using the soil and water assessment tool. Energy Reports, 6, 1010–1028. https://doi.org/10.1016/j.egyr.2020.04.025

Manufacturing, 35, 1172–1177. https://doi.org/10.1016/j.promfg.2019.06.073

Kamal, M. M., Abbas, A., Alam, T., Gupta, N. K., Khargotra, R., & singh, T. (2023). Hybrid cross-flow hydrokinetic turbine: Computational analysis for performance characteristics with helical Savonius blade angle of 135°. Results in Engineering, 20(August), 101610. https://doi.org/10.1016/j.rineng.2023.101610

Satou, E., Uchiyama, T., Takamure, K., Ikeda, T., Okayama, T., Miyazawa, T., & Tsunashima, D. (2023). Changes in power generation performance of an undershot cross-flow-type hydraulic turbine in an irrigation channel due to snow masses passing through the rotor. Heliyon, 9(10), e20833. https://doi.org/10.1016/j.heliyon.2023.e20833

Thyer, S., & White, T. (2023). Energy recovery in a commercial building using pico-hydropower turbines: An Australian case study. Heliyon, 9(6), e16709. https://doi.org/10.1016/j.heliyon.2023.e16709

Uchiyama, T., Honda, S., Okayama, T., & Degawa, T. (2016). A Feasibility Study of Power Generation from Sewage Using a Hollowed Pico-Hydraulic Turbine. Engineering, 2(4), 510–517. https://doi.org/10.1016/J.ENG.2016.04.007

Verma, V., Gaba, V. K., & Bhowmick, S. (2017). An Experimental Investigation of the Performance of Cross-flow Hydro Turbines. Energy Procedia, 141, 630–634. https://doi.org/10.1016/j.egypro.2017.11.084

Wu, X., Wu, H. N., Zuo, L., & Chen, B. F. (2022). The effect of the blade number on a cross-flow hydrokinetic turbine. IFAC-PapersOnLine, 55(27), 62–67. https://doi.org/10.1016/j.ifacol.2022.10.489

Published

2024-12-30

How to Cite

Rancang Bangun Turbin Cross-flow sebagai Penggerak Mula Sistem Pembangkit Listrik Tenaga Piko-hidro Model Drum. (2024). Jurnal Sains Dan Teknologi: Jurnal Keilmuan Dan Aplikasi Teknologi Industri, 24(2), 217-230. https://doi.org/10.36275/whm2q157